Database and VO developments at AIP, Potsdam

Kristin Riebe

E-Science group @ Leibniz-Institute for Astrophysics Potsdam

Example data types at AIP

- Observations:
 - RAVE
 - Radial velocity measurements + spectra
 - SDSS
 - Mirror of DR7, catalog server
 - "minor data sets":
 - Plate archive (historical plates)
 - CALIFA (spectra of galaxies)
 - Cepheids (collection of data for time series), ...
- Simulation data:
 - Magnetohydrodynamics
 - Cosmological simulations: particle data,
 - dark matter halo catalogues, halo merger history, ...

Example: MultiDark Database

- Collaboration with Spanish MultiDark project
- cosmological simulations in a database
- 3 simulations uploaded (20 TB, 2.5 10¹¹ rows)
- > 150 registered users
 > 1 million queries in 3 years
 > 4 TB downloaded

Example workflow: MultiDark Database

• Extract:

- Cosmologists produce data, copy them to a server at AIP
- Transform:
 - We check data and reading routines, data curation, convert format
- Load:
 - Ingest data into database
- Check and test:
 - Check the data for completeness, consistency

- Create Peano-Hilbert keys, indexes (Spatial3D, T. Budavari, G. Lemson)
- Publish:
 - Using simpledb (Gerard Lemson, Millennium DB)
 - Write/update documentation; update admin tables of the database
 - Inform users

Upload: DBIngestor

- Uploading different formats required tailor-made solutions
 - slow, if conversion to ASCII needed, data curation on DB
- Solution: DBIngestor library
 - Adrian Partl, https://github.com/adrpar/DBIngestor
 - adjustable to any database server
 - easy to write own file readers (Asciilngest, FofIngest, PmssIngest)
 - apply converters during ingestion
 - e.g. unit conversion, type conversion (int/real), adding identifiers, grid indexes
 - apply asserters (not nan, inf, null etc.)
 - => transform and upload in one go
 - => easier to preserve the workflow for later reference

Fast access to data: MySQL cluster

- Previous database server:
 - 1 Microsoft SQL Server => expensive license, not easy to share
 - serving raw particle data for simulation snapshots is quite slow
 - Index on particle data (~ 10^{10} particles) ~ 1 week

• Solution:

- use MyISAM engine of MySQL/MariaDB
- => no transactions (need fast select, rarely upload)
- => Spider engine (Kentoku Shiba) for distributed queries available
- => data distributed over 10 nodes, queries much faster!
- Spider engine now included with MariaDB!

PaQu + QueryQueue

- PaQu:
 - reformulates queries, based on Shard-Query
 - e.g.: aggregate function count
 = count on each node + sum on head node
- QueryQueue:
 - allow asynchronous job submission
 - plugin for MySQL, supports priorities
 - control number of executing jobs on server
 - jobs stored in user table for later retrieval

Further MySQL plugins

- C-library libhilbert
 - For creating indexes of space-filling
 Peano-Hilbert curve in 20 dimensions

- MySQL sprng
 - Implements several random number generators
 - Better random sampling for large numbers than with built-in function

- Functions of pgSphere converted to mysql_sphere
- Allows queries on a spherical surface (cut outs, range in angles)
- Especially important for observational databases

... now also ported to SQLite!

Data download: VOTable dump

• Plugin for MySQL, fork of mysqldump

- dumps VOTable format 1.3, ASCII or binary format, directly from MySQL database table
- => especially useful for large tables, no additional conversion on server needed
- Download from https://github.com/adrpar/mysqldump-vo

New portal: www.cosmosim.org

More information on the simulations, the database, its design and the possibilities to access the data are described in the Documentation.

The MultiDark-Planck (MDPL) and

Web application: Daiquiri

- Developed by Jochen Klar und Adrian Partl
- http://escience.aip.de/daiquiri/

- Web application for publishing data
- Modular, highly customizable
- Using PHP, Zend-framework
- Modern interface using bootstrap, jQuery
- Authentication, Query Interface
- Wordpress integration
- One code base to serve most needs, open source, (easily) extendable

- SAMP for sending results to VO clients
- UWS implemented client
 - Python client to access UWS services
 - Create, execute, abort or delete jobs
 - see https://github.com/adrpar/uws-client
- Package for "astroquery" (developed by astroquery-contributors)
 - https://github.com/astropy/astroquery, maintained by Adam Ginsburg, Thomas Robitaille
 - affiliated to astropy
 - Provides access to astronomical web services (e.g. Simbad, UKIDSS)

- Publishing data of cosmological simulations
- DBIngestor library for data upload and conversion, for any kind of database, also for migrations
- MySQL cluster using Spider engine
- Own additions: PaQu, QueryQueue
- Libhilbert, MySQL sprng for random numbers
- Mysqldump for VOTable
- UWS client
- Daiquiri: web application with SAMP and UWS support
- All developments available on GitHub!
 => easy to share and contribute!