Database and VO developments at AIP, Potsdam

Kristin Riebe

E-Science group @
Leibniz-Institute for Astrophysics Potsdam
Example data types at AIP

• Observations:
 – RAVE
 • Radial velocity measurements + spectra
 – SDSS
 • Mirror of DR7, catalog server
 – „minor data sets“:
 • Plate archive (historical plates)
 • CALIFA (spectra of galaxies)
 • Cepheids (collection of data for time series), ...

• Simulation data:
 – Magnetohydrodynamics
 – Cosmological simulations: particle data, dark matter halo catalogues, halo merger history, ...
Example: MultiDark Database

- Collaboration with Spanish MultiDark project
- Cosmological simulations in a database
- 3 simulations uploaded (20 TB, 2.5×10^{11} rows)

- > 150 registered users
- > 1 million queries in 3 years
- > 4 TB downloaded
Example workflow: MultiDark Database

• Extract:
 – Cosmologists produce data, copy them to a server at AIP

• Transform:
 – We check data and reading routines, data curation, convert format

• Load:
 – Ingest data into database

• Check and test:
 – Check the data for completeness, consistency
 – Create Peano-Hilbert keys, indexes (*Spatial3D*, T. Budavari, G. Lemson)

• Publish:
 – Using simplesdb (Gerard Lemson, Millennium DB)
 – Write/update documentation; update admin tables of the database
 – Inform users
Upload: DBIngestor

- Uploading different formats required tailor-made solutions
 - slow, if conversion to ASCII needed, data curation on DB
- Solution: DBIngestor library
 - Adrian Partl, https://github.com/adrpar/DBIngestor
 - adjustable to any database server
 - easy to write own file readers (AsciiIngest, FofIngest, PmssIngest)
 - apply converters during ingestion
 - e.g. unit conversion, type conversion (int/real), adding identifiers, grid indexes
 - apply asserters (not nan, inf, null etc.)
 - => transform and upload in one go
 - => easier to preserve the workflow for later reference
Fast access to data: MySQL cluster

• Previous database server:
 – 1 Microsoft SQL Server => expensive license, not easy to share
 – serving raw particle data for simulation snapshots is quite slow
 – Index on particle data (~ 10^{10} particles) ~ 1 week

• Solution:
 – use MyISAM engine of MySQL/MariaDB
 – => no transactions (need fast select, rarely upload)
 – => Spider engine (Kentoku Shiba) for distributed queries available
 – => data distributed over 10 nodes, queries much faster!
 – Spider engine now included with MariaDB!
MySQL cluster with Spider engine

User

Daiquiri
PaQu
Webinterface

MySQL
Query queue
Spider engine

DBIngestor / AsciIl ingest

Admin

Spider
Federated

MySQL
MySQL
MySQL
MySQL
MySQL
MySQL
...
MySQL
PaQu + QueryQueue

• **PaQu:**
 - reformulates queries, based on Shard-Query
 - e.g.: aggregate function count
 = count on each node + sum on head node

• **QueryQueue:**
 - allow asynchronous job submission
 - plugin for MySQL, supports priorities
 - control number of executing jobs on server
 - jobs stored in user table for later retrieval
Further MySQL plugins

• C-library libhilbert
 – For creating indexes of space-filling Peano-Hilbert curve in 20 dimensions

• MySQL sprng
 – Implements several random number generators
 – Better random sampling for large numbers than with built-in function
mysql_sphere

- Functions of pgSphere converted to mysql_sphere
- Allows queries on a spherical surface (cut outs, range in angles)
- Especially important for observational databases

- … now also ported to SQLite!
Data download: VOTable dump

- Plugin for MySQL, fork of mysqldump
- dumps VOTable format 1.3, ASCII or binary format, directly from MySQL database table
- => especially useful for large tables, no additional conversion on server needed
- Download from https://github.com/adrpar/mysqldump-vo
New portal: www.cosmosim.org
Web application: Daiquiri

- Developed by Jochen Klar und Adrian Partl
- http://escience.aip.de/daiquiri/
- Web application for publishing data
- Modular, highly customizable
- Using PHP, Zend-framework
- Modern interface using bootstrap, jQuery
- Authentication, Query Interface
- Wordpress integration
- One code base to serve most needs, open source, (easily) extendable
Database access

- **SAMP** for sending results to VO clients
- **UWS implemented client**
 - Python client to access UWS services
 - Create, execute, abort or delete jobs
 - see https://github.com/adrpar/uws-client

- **Package for „astroquery“**
 (developed by astroquery-contributors)
 - https://github.com/astropy/astroquery, maintained by Adam Ginsburg, Thomas Robitaille
 - affiliated to astropy
 - Provides access to astronomical web services (e.g. Simbad, UKIDSS)
Summary

- Publishing data of cosmological simulations
- DBIngestor library for data upload and conversion, for any kind of database, also for migrations
- MySQL cluster using Spider engine
- Own additions: PaQu, QueryQueue
- Libhilbert, MySQL sprng for random numbers
- Mysqldump for VOTable
- UWS client
- Daiquiri: web application with SAMP and UWS support

- All developments available on GitHub! => easy to share and contribute!